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The discrete self-trapping equation and the Painlevk property 

D Hennig 
Fachbereich Physik, Institut fiir Theoretische Physik, Humbaldt-Universitit zu Berlin, 
lnvalidenstrasse 42, 0-1040 Berlin, Federal Republic of Germany 

Received 16 May 1991, in final form 6 November 1991 

Abstract. From the discrete self-trapping (DST) equation for three degrees of freedom 
rewritten in terms of the density matrix one can derive an autonomous system of real 
first-order ordinary differential equations by using SU(3) notation. Performing a PainlevC 
analysis, it is found that, depending on the parameters of the system, integrable and 
non-integrable cases can be distinguished. 

1. Introduction 

The discrete self-trapping (DST) equation 

was introduced by Eilbeck et al (1985) as a model to describe the nonlinear dynamics 
of small polyatomic chains such as water, ammonia, methane, acetylene and benzene, 
as well as of larger molecules such as acetanilide. Here A is a complex n-component 
vector, the components of which represent the probability amplitude of finding some 

diag(lA,/Z, IA,I2,. . . , /Ani2) which appears in the nonlinear term of (1.1) represents the 
tendency of A to self-trap through a nonlinear interaction with the adjacent structure. 
The strength of this interaction is specified by the positive parameter r. M is a real 
symmetric matrix (m,  = mjj)  with zero diagonal elements. 

The DST system is Hamiltonian and has the conserved quantity N = X Y = ,  IAi/2. It 
has two integrable limits, corresponding respectively to r = 0 and E = 0. The properties 
of (1.1) and, in particular, the appearance of chaotic behaviour for n > 2 were investi- 
gated by Eilbeck et al (1985), Jensen et al (1985), De Filippo et al (1988) and 
Cruzeiro-Hansson et al (1990). While solutions for its continuum limit (the one- 
dimensional nonlinear Schrodinger equation) are well known (Scott et nl 1973), 
analytical solutions for the discrete chain are not known except for the case n = 2. 

We extend model (1.1) to the more general case when both the strength of the 
nonlinear interaction and the harmonic frequency depend on the site index n. This 
can be the case when different subunits constitute the chain. Therefore, we introduce 
in (1.1) the column vector 

conserved quantity on the nth suhunit of the structure, The diagonal matrix D(IAV) = 

r = ( 7 , .  y,, . . . , Y.) (1.2) 
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1248 D Hennig 

of real components which takes into account anisotropic nonlinear coupling effects and 

= ( % I ,  W o 2 3 . .  . , won) (1.3) 
as the n-component vector for site-dependent frequencies. 

In this way, we have included disorder in the site frequencies ooi, in the nonlinear 
interaction strengths yl and in the coupling matrix with elements m,. 

In this paper we perform a Painlev6 analysis for a system of first-order ordinary 
differential equations (ODES) derived from the n = 3 OST equation rewritten in terms 
of the density matrix by using SU(3) notation. In particular, we look for all values of 
the parameters of the system such that its solutions have the Painlevt property, 
indicating integrability. 

The paper is organized as follows. Section 2 is concerned with the Painlev6 property 
and its relation to the integrability of a given system of ODES. Section 3 is related to 
the DST equation with three degrees of freedom and its formulation as a real-valued 
Hamiltonian system of first-order  ODE^. In section 4 we apply the Painlevt test to the 
system of ODES related to the DST equation for the case n = 3. Finally, section 5 provides 
a brief summary of the results. 

2. Integrability and the Painleve property 

Much attention has been focused on the question of whether a given dynamical system 
is integrable or non-integrable. Only a small number of integrable systems are known 
to date and it has been widely recognized that most (nonlinear) dynamical systems 
are non-integrable. 

A direct method to identify integrable systems is the so-called singular point analysis 
(also called the PainlevC test). In this analysis the structure of singularities of the 
solution of ODES is studied in the complex (time) plane. An ODE (or a system) in the 
complex domain is said to be of Painlev6 type (or has the Painlev6 property) if the 
only movable singularities of its solutions are poles. This means there are no moveable 
branch points or movable essential singularities (Ablowitz et al 1980). 

There are some recent theorems which describe the connection between singular 
point analysis and integrability. Adler and van Moerbeke (1982a, b) and van Moerbeke 
(1988) proved for a class of Hamiltonian systems that passing the Painlevt test is a 
necessary condition for algebraic complete integrability in terms of Abelian function. 
Yoshida (1983a, b) proved that, if an autonomous system of first order ODES does not 
pass the PainlevC test by a certain degree (i.e. has complex or irrational resonances), 
then the system cannot be algebraically integrable. An ODE (or a system) is said to be 
of the PainlevC type if all its solutions possess the Painlevk property. 

A necessary condition that an autonomous system of ODES 

where g is rational in w = ( wI , w,, . . . , wn) ,  has the Painlev6 property is that there is 
a Laurent expansion 

0 

w i ( Z ) = ( Z - z , ) m  1 as(z-z1Y i = 1,2, . . . , n (2.2) 
j - 0  

where n - 1 expansion coefficients are arbitrary (Steeb and Euler 1988). This necessary 
condition will be applied in the following. 
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3. The DST equation for n = 3 

Now we consider the case of a trimer, which is the first nontrivial case beyond the 
dimer. The DST equation for n = 2 can easily be integrated. For n = 3 the DST system 
reads 

m13 T A 1 1  . d  [ A I ]  ~Y11A1i2--001 m12 

1- A2 =-  mZ1 y2iA2i2 - wO2 mZ3 ]I;:]. (3.1) 
d tLA IJ  L m3, m32 Y ~ I A P  003 

There exist two possible configurations, depending on the form of the linear exchange 
interaction: the triangular configuration, namely a closed chain of three sites where 
each site is coupled to its neighbouring site, 

and the open chain where only one of the three sites is connected with the two others 
via a linear exchange interaction; 

--. 
The system of three coupled equations (3.1) for the complex amplitudes A, can be 
rewritten in terms of the density matrix p with elements = A,AZ using SU(3) notation 
and expanding p in terms of the corresponding generators. 

We define the following real-valued variables through 

U, =AT(At),,A, i = 1.2, . . . , 8  (3.2) 
where A,  are the generators of the Lie group SU(3) for which the standard form 
Gell-Mann matrices are taken. 

Equations (3.1) can now be expressed as a real-valued Hamiltonian system with a 
Lie-Poisson bracket defined on the dual space of the Lie algebra so@) with dual 
coordinates U = (U,, . . . , us)  and the bracket between two functions F, G:  s0(8)* + R 
is given by 

(3.3) 

where e: are the structure constants of so (8 ) .  

written in Hamiltonian form as 
With respect to the Lie-Poisson bracket (3.3) the equations of motion may be 

i =  1,. . . , 8  h JH 8 1 C . . U  - 
j , h = ]  'I ' a u ,  (3.4) 

(3.5) 
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The square of the number N is a Casimir function for the Lie-Poisson bracket: 
8 

N 2 = ( i )  1 uf. 
i - l  

The structure matrix of the Lie-Poisson manifold so@)* with elements 
8 

J g ( u ) =  1 .;Uk U €SO@)*  
k = I  

- 0 ZU, -2u2 U7 -u6 us - U4 0 -  
-2u, 0 2u, u6 U1 - U4 - U5 0 
2u* -2u,  0 us -U& -U, U6 0 
-u, -U6 -us 0 &us+u, u2 U, -&Us 

U6 -U, u4 -(&u,+u,) 0 -U, U2 &U, ' 

-us U4 U7 -U2 111 0 - (J5u , -u3)  -&U, 

ua US -U6 -U1 -142 J5u , -u ,  0 &U, 

- 0  0 0 &U, -&U, &U, -&U6 0 -  

JH 
U = J ( u ) -  

au 
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where J(u) is a skew symmetric matrix with polynomial entries in U, such that the 
Poisson bracket 

{F, G) := (Jz E) 
au' au 

(3.11) 

u3 = -2m,2u2-m,3u5+m23u8 
U - ?  

4- 2(Y1 + y3)u5u,+f(y, - y3)[N+f(u3 - u9)luS - (%I - W01)'5 

-m32u2+ mI2ug 

+m3+, +2mI3u6-  

U s - --i( 2 YI + Y , ) ~ , ~ , - X Y I  - ~ > ) [ N + f ( u , -  u,)lu,+ ( w o I - w o ~ ) ~ ~  

& = -m;:u2-_2m3;u5 - m2:uB 

U, = f ( Y 2  + Y 3 ) U , U , + f ( Y Z  - Y3)[N -+(U,+ U J l U S  - (WO2 - Wo3)Us 

U --1 - dy2+ y,)u,u, -f(y2 - Y J N  -+(U,+ u d l u , +  (w02 - W O I ) ~ ,  + m3,u1 
+m3,u2+ m I u 5  

+2m32u9- m21uq 

U9 = m12u2 - m31u5 -2m2,u8. 

There exists the trivial first integral 

U) - U,+ ug= 0. (3.12) 

Notice that in the special case of a transfer matrix with only one non-vanishing element 

of the equations decouple from the system to result in the system for an isolated dimer, 
Motivated by a known mapping between an integrable nonlinear lattice Schrodinger 

equation and an integrable classical spin system (Ishimori 1982), we have studied this 
question for the n = 3 DST equation. We have found out that such an attempt fails. 

(e.g. X12 z 0, nil) = Z2) = 0 and :he co::espandlxg pe:Cx:a!iox of .ice icdices) :h;ee 
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Now we perform a PainlevC analysis of system (3.11). The quantities U, are 
considered in the complex domain U, + wj = wjI + iwj2. We are interested in identifying 
those sets of adjustable parameter values for which system (3.11) is integrable. In the 
next section these parameter sets are classified and the corresponding PainlevC test is 
performed for special situations. 

4. Painlev6 analysis for special nonlinear trimer configurations 

In view of possible applications in trimer molecular aggregates we consider the 
following special cases depending on the explicit form of the nonlinear terms. 

4.1. Complete!v anisotropic nonlinear interaction strengths (y ,  # y2 # y3) 

According to the first trivial integral (3.12) we substitute w9= w6-w3 to obtain the 
reduced system in w, ( i  = 1,2, . . . , 8 ) .  First, we determine the dominant behaviour. 
Inserting the ansatz 

w;(z)-aio(z-z,)*, a,,#Q 

into (3.11), we calculate the kj ( j  = 1 , 2 , .  . . ,8)  for which there is a balance of the 
leading terms. One finds the following two cases: 

Case 1: k.  = -1  i = 3,6,7,8 k.  = -2 j = l , 2 , 4 , 5  (4.la) 

a la=  ( 2 d ? W m I 2  a2, = fia,, = *2i(y2+ 2r3)l? 
am= ( ~ Y ~ I ? ) I w ~  as,= iia,, a6,=*2i(2y2+y3)/? 

avo= ~ ( 2 i l ? ) l [ ( m l s l m 1 2 ) ~ ~ + ( m l ~ l m , 3 ) ~ ~ l  
a,, = (21 ? ) [ ( m , J  mI3)y2 - (m131 m l ~ ) n l  
7 = YI YZ+ YI Y3 + Y2Y3 y2#Q ”/, # Q .  (4.lb) 

Case 2: k.  = -1 i =  1,2,3,4,5,6 k, = -2 j = 7.8. (4.2a) 

From the system with the dominant behaviour we find for the two linear equations 

which is responsible for a remove of all y,-dependent terms from the right-hand sides 
of the equations for the expansion coefficients a;, with i = 1,2,4,5. For the expansion 
coefficients ai, one obtains 

ate= * 2 i ( m d m 2 3 ) l ( ~ 3  - Y J  a,,=Tia,, ala= TW(Y,+Y,) 

a,,= (2/m2,)/(y2+ v3) ago= iia,” Y 2 #  Y 3 .  

w , --w - - - m23w8. This leads to  an asymmetry in the expansion coefficients a3, = -aco 

= *2i( m12/ m23)/ ( y3 - y 2 )  aso= Tia4, a6, = -a3, (4.26) 

Next, we determine the resonances, i.e. the power of ( 2 - 2 , )  for which arbitrary 
constants may enter the series solution 

m 

We substitute 

wi( z )  = aiorx* + b;7”+‘ 
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into the simplified equations of (3.11), which retain only the dominant terms, and find 
after a little algebra for the resonances: 

Case 1: r =  -1, l(twofold), 2,4(twofold) 

(4.3) 

and * = ~ * ( ~ Y , ) / ( Y , + Y ~ ) .  (4.4) 

One root is always -1 and is associated with the arbitrariness of the pole position 
at z,. 

In order to determine those values of y,, yz, yl for which the Painlevi property is 
satisfied, we require that all resonances, for both case 1 and case 2, are integers. 

To get integer resonances for case 1 we require (y2y3)/7 = m ( m  - 1)/2 with Iml> 1 
an integer in the last expression of (4.3). But this leads to an additional negative 
resonance r- < -1 which must be ignored. From an expansion about a singularity one 
gets a seven-parameter solution and, hence, not the general eight-parameter form of 
the solution. 

It is seen from the last two expressions of (4.4) that for all case 2 resonances to 
be integer a necessary condition is yz= y,, which has to be excluded, however, due 
to (4.26). Since not all resonances are integer the system does not pass the PainlevC 
test and is therefore non-integrable in this case. 

4.2. Incomplete isotropic nonlinear interaction strengths (y2 = y3 = y, y, # y) 

The case of incomplete anisotropy in the nonlinear interaction strengths ( y2 = y, = y, 
y,  # y) is included in the results of case 1 of the previous section. Setting y2 = yl = y 
in (4.3) one obtains for the resonances 

r = -1, l(twofold), 2,4(twofold) 

and r =i+J$+ 1/[1 +i(yJy)]. (4.5) 

To get only integers from the last expression of (4.5) we require l / ( l+ f (y , /y ) )=  
m ( m  - 1) beneath the square root with Iml> 1 an integer. But this leads to an additional 
negative resonance r- < -1 which must be ignored. Thus, the corresponding singular 
expansion is not the general solution. 

4.3. Isotropic nonlinear interaction strength (y, = y2 = y3) 

It is easily seen that the results for the Painled test for a trimer with equal anharmonic 
parameters are included in the results of case 1 of section 4.1 as the limit case 
yI = y2 = y, . The resonances are given by 

r = - 1 , l  (twofold),2,4(twofold) and r=i*e. (4.6) 

Two of the resonances are irrational, hence system (3.11) with equal nonlinearity 
parameters does not have the Painlev6 property and we can apply Yoshida's theorem 
(1983) to show that the system is non-integrable. Numerical studies indicate that this 
system exhibits chaotic behaviour (Eilbeck ef a1 1985). 
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4.4. The anisotropic case of a two-site anharmonicity 

The limit case of a two non-zero and one zero anharmonic parameter is also included 
in the general case of section 4.1. Setting y, = O  in (4.3) for the case 1 resonances one 
obtains 

r =  -1, 1 ,2 ,4  (4.7) 

and all resonances are doubly degenerated. Only six resonances are positive integers. 
This implies that the corresponding singular expansions are not generic. Since the 
whole of case 2 of section 4.1 is independent of the value of y , ,  and even a vanishing 
y, is allowed, the resonances for the two-site anharmonicity system with dominant 
behaviour (4.2a) are again given by (4.4); hence, the system does not possess the 
PainlevC property. 

4.5. The case of a single-site anharmonicity 

The case of a single-site anharmonicity (e.g. y ,  = y2  = 0, y, # 0) is included in case 2 
of section 4.1. For the resonances one now gets 

r =  -I(twofold), I(twofold), 2,3,4. (4.8) 

Thus, only a seven-parameter singular expansion is possible. 
However, the case of only one non-vanishing nonlinearity parameter is not included 

in case 1 of section 4.1. This is due to the vanishing of Q = y,yz+ y , y 3 +  y2y,. System 
(3.11) now contains nonlinearities in only four of the eight equations whereas, in the 
presence of at least two non-vanishing nonlinearities, six equations were nonlinear in 
the previous cases. 

To find all other possibilities for the dominant behaviour, it turns out that it is now 
more convenient to work with the system in SU(3) coordinates. Setting in (3.5) 
yI = y 2  = 0, one obtains with the help of (3.4) and (3.7) a system of eight coupled 
equations, with only four of them containing nonlinear terms connected with the 
anharmonic parameter y,. 

Ul=-(wu,-ou,)u2-m,,u,-m,,u, 

U, = (wuI - wO2)uI + 2m12u,+ m2,u4- 

U,= -2m,,u,- m,,u,+m,,u, 

U , = - A , ( u , ) u , + m , , ( u , + ~ , ) - - m ~ ~ ~ ~ + m 2 ~ ~ ,  

U,= A , ( u 8 h 5  - m2,u2+ m12u7 

(4.4) 
AI(%) = f Y s ( N +  us) f w m - w o ~  

U, = A 2 ( u 8 b 7 +  m,,u2+ mlzu5 

U, = -A2(un) u6 + m, I ut - m2, u4 + m,2( U, - U,) 

A 2 ( ~ n )  = h ( N  + ~ 8 )  + wo,-wo2 Us = -3m,,u,-3m,2u, 

For a PainlevC test we regard these equations in the complex domain and first determine 
the dominant behaviour. Setting U,- w, = ~ , ~ + i w , ,  and inserting the ansatz 

w , ( z )  = a,u(z -z , )X~ 
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in (4.9) we find 

k, = k2 = k3 k8 = -1 k4 = ks = k6= k,= -2 (4.100) 

and for the expansion coefficients 

ala= *i(m2,a4,+ m13a6,) a2,=-m~3a4~+m13a60 

a30=*i(m13a40- mZ3aMI) 2 / ~ , =  m31a40+m23a60 

a,, = *ia40 a,, = *ia6, aBo= *6i/y3 

where aa0 or a6, is a free parameter. 
For the resonances one gets 

(4.10b) 

r = -1, r = 0, r = l(threefold), r = 2, r = 4(twofold). (4.11) 

Since a4, or os,, is arbitrary in our first step of the singular point analysis, we find that 
r = 0 is a resonance. To examine the behaviour in the neighbourhood of the singularity 
at z, one makes the ansatz 

m 

w , ( z ) = T - '  2 TJaq  i =  1 ,2 ,3 ,8  
,=U 

and 

m 

w , ( z )  = T-' 1 +aq i = 4,5,6,7 
,=U 

On substitution of these Laurent expansions into (4.9) one obtains a system of linear 
equations. At the threefold resonance j = 1 the expansion coefficients a,, ( I  = 1,2,. . . ,8) 
are determined by the following system: 

-0 0 0 0 m2, 0 m,, 
0 0 0 -m23 0 m,, 0 
0 0 0 0 m,, 0 -mZ3 
0 0 0 -1 -ciago 0 0 
0 0 0 aago -1 0 0 
0 0 0  0 0 -1  -ciaRO 
0 0 0  0 0 wag, -1 

LO 0 0 0 3m,, 0 3m2, 

(4.12) 

with a=&. 
For all values of the parameters m, and p ,  this system of linear equations has no 

solution. The rank is equal to five and (4.12) can be solved if and only if m,,=O and 
P I  =0, i.e. wo, = m o l .  Then the system admits a three-parameter solution: 

a4, = a,, =a,, = a,, = O  a,, = - ( P / . )  p = o,,--o,,+ aN 

with a , , ,  a2, and arbitrary. 
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For j 2 2 we obtain the recursion formula 

i - 1  0 0 0 m2) 0 m13 
0 j - 1  0 -m23 0 mI3 0 
0 0 j - 1  0 mL3 0 -m2)  
0 0 0 j - 2  -aas0 0 0 
0 0 0 aagO j - 2  0 0 
0 0 0 0  0 j - 2  -ea,, 
0 0 0 0  0 aa8,, j - 2  
0 0 0 0 3m3, 0 3m,2 

(4.13) 

At the resonance j = 2 we find that ag2 can be chosen arbitrary provided the 
compatibility condition m,3 = m2) is satisfied, which leads to a further restriction on 
the intersite matrix elements. 

At the twofold resonance j = 4  we get from the recursion formula (4 .13)  a set of 
equations where both the fourth and the fifth equations and the sixth and the seventh 
equations are equal. Therefore, six equations are left for the eight coefficients ai4 
( i  = 1 , 2 , .  . . ,8) .  That means two expansion coefficients are arbitrary. Together with 
the pole position at z = z , ,  the eight constants of integration are obtained. The Laurent 
expansion exists and system (4 .9 )  has the Painlev6 property. 

One finds that in the case of a single-site anharmonicity the configuration of an 
open chain with identical intersite matrix elements, responsible for the linear interaction 
of the only anharmonic site with its neighbouring sites, is integrable, i.e. 

Y t = O  Y3 + 0 Y z = O  
0 4 6  

m 1 3 =  m32 

with regard to the invariance to any site index permutation. 
The trimer results of this section yield that this is the only integrable configuration 

for the DST system with n =3: all other configurations are non-integrable. Finally, we 
comment on the possibility that 7 could vanish even for non-vanishing yis. Setting 
7= y , y 2 + y , y 3 + y 2 y 3 = 0 ,  one obtains 

Y, = - Y 2 Y a / ( Y 2 +  Y 3 ) .  (4 .14)  
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Even though this is unphysical because at least one yi has to be negative it is still 
interesting from a purely analytical point of view. 

The resonance analysis may be repeated and yields that three of the resonances 
are irrational and, hence, the system in this case is not of the Painlevt type. 

5. Summary 

We have discussed the DST equation, including disorder, in all system parameters for 
three degrees of freedom, from which we derived a system of eight real first-order 
ODES. We found that the n = 3 DST equation possesses the Painlevt property only in 
the case of a single-site anharmonicity for the configuration of an open chain; this 
means that the system of ODES is integrable in this special case only. In all other cases, 
i.e. for two- and three-site anharmonicities, we find that the DST equation is non- 
integrable. We note that this behaviour is present for both the symmetric (equal 7,s) 
and the asymmetric (unequal yis) cases of site anharmonicities, i.e. disorder in the 
nonlinearity parameter is not crucial in causing non-integrability. 

The extension to larger DST systems with n > 3 should certainly be of interest. 

Acknowledgments 

I am very grateful to the referees for helpful comments and remarks 

ileierences 

Ahlawitz M 1, Ramani A and Segur H 1980 J. Moth. Phys. 21 715 
Adler M and van Moerheke P 1982a Inuent. Molh. 61 291 
- 1982h Commun. Moth. Phys. 83 83 
Cruzeiro-Hansson L, Fedderson H, Flesch R, Christiansen P L, Salerno M and Scott A C 1990 Phys. Reo. 

De Filippo S ,  Fusca Girard M and Salerno M 1988 mysic0 iYD 4i i  
Eilheck J C, Lomdahl P S and Scott A C 1985 Physic0 16D 318 
lshimori Y 1982 I .  Phys. Soc. Japan 51 3417 
Jensen J H, Christiansen P L, Elgin J N, Gibbon J D and Skovgaard 0 1985 Phys. Len. IlOA 429 
Scott A C, Chu F Y and McLaughlin D W 1973 Froc. IEEE 61 1443 
Steeb W-H and Euler N 1988 Nonlinear Evolurion Equalions ond Poinleud res1 (Singapore: World Scientific) 
van Moerbeke P 1988 Proceedings of the Workrhop on Finile Dimensional Inregrable Nonlinear Dynamical 

Yoshida H 1983a Ceblial  Mech. 31 363 - 1983h Celestial Mech. 31 381 

B 42 522 

Syrtems ed P G Leach and W-H Steeb (Singapore: World Scientific) 


